il metaplane

<>

Getting started with
data observability

/. Column orders.subtotal lower than expected

300

Improve data integrity, save
engineering time

How to get started with data observability

Data observability may be a new buzz word, but problems related to data quality
and losing trust in data have existed for thousands of years. One way to think about
data observability is that it represents a technology that helps solve these problems.

By continuously monitoring the warehouse for data consistency and completeness,
a data observability platform can empower data teams to proactively fix data quality
iIssues and build trust in data so they can focus on creating value for their
organization, rather than fighting data quality fires.

We break down getting started with data observability in a few steps:

0. The following guide assumes that you have a data warehouse and are actively
using your data (e.g. analytics or data feeds back into business applications).

1. Add monitors across your warehouse to identify where your data quality
ISSues are.

2. Use context from the platform to identify where and how to fix data
quality issues.

3. Incorporate monitors into your continuous integration/deployment
(C1/CD) transformation (modeling) workflow to prevent future incidents.

GETTING STARTED WITH DATA OBSERVABILITY | 01

Stay aware of Schema Drift -
The humber one culprit

You’'ve probably experienced this for yourself. You find a broken dashboard and
laboriously query the reference objects only to discover that your null values weren't
introduced by a data collection error, but rather, a simple column name change.

Particularly as teams get bigger and more tools are adopted, schema changes can
occur from:

« Upstream engineering changes: A field that “no one is using” might be
accidentally deprecated

» Data loading tools: Some tools merge schema changes into your warehouse by
default, and may rename columns or change types altogether.

« 3rd party APIs: 3rd party applications typically update field names and types

« User input: Custom field deprecations and simple typos can cause unintended
downstream effects.

Tables (1 added, 1 deleted)
+ METAPLANE DB.METAPLANE SCHEMA.new table
- METAPLANE DB.METAPLANE SCHEMA.old table

Columns (1 added, 1 type changed, 1 deleted)

+ METAPLANE DB.METAPLANE SCHEMA.METAPLANE TABLE.CITY

A METAPLANE DB.METAPLANE SCHEMA.METAPLANE TABLE.PHONENUMBER: "NUMBER" - "TEXT"
- METAPLANE DB.METAPLANE SCHEMA.METAPLANE TABLE.COLUMN NAME

Tip: It's important to be aware of schema changes from your raw tables down to your modeled
tables. Depending on your modeling strategy and adoption of self-service data usage, schema
changes can impact entire business units.

Finding data quality incidents
with machine learning based monitors

Adding tests to your data can be daunting. It involves coding, test type selection,
acceptance threshold scoping, and ongoing maintenance.

Metaplane suggests a machine learning (ML) based approach, where hundreds of
monitors can be programmatically added. Manual threshold setting is unnecessary
as ML models monitor data based on its historical and current behavior, and can be
done in as few as 3 days. This approach increases coverage and improves
understanding of data behavior over time.

We recommend starting with baseline monitors for data volume and freshness to

catch silent data bugs'. Then add more advanced monitors based on data
characteristics.

Adding early indicator monitors

Two of the most common issues caused by silent data bugs are inconsistent
data volumes and delayed data. When either of these problems occuir,
your data consumers are using inaccurate or out-of-date data.

Rather than receive questions from your teammates like “why does this dashboard
look wrong?” or “why are our marketing automations broken?”, a data observability

platform monitors these issues and helps to resolve them quickly to preserve trust in
your data.

To change from being reactive to proactive, we recommend adding baseline
monitors for data volume and freshness.

! Silent data bugs occur when source and ETL systems appear to be operating,
but the underlying data is broken. For example, your ETL systems have finished
landing data in the warehouse, but the volume of data is incorrect, schemas

have changed, or the distribution of the data has drifted, to name a few
common scenarios.

IIII GETTING STARTED WITH DATA OBSERVABILITY | 02

Data freshness

One of the most common issues data teams experience is stale data - there is data

in the warehouse, but it has not been updated and is therefore inaccurate. Metaplane
can automatically monitor the frequency at which a table has been updated and
ensure that the data is updated at a consistent cadence.

Proactively catches: delayed Fivetran or Stitch jobs, broken dbt models that do not
run, source APl outages

Data volume (row count)

Data teams work hard to move data from source systems into the warehouse and
beyond. It is common for inconsistent volumes of data to land or be used in the
warehouse due to replication issues, transformation logic, or transient source issues.
The majority of ingestion and transformation pipelines reference consistent source
“objects” (ie files in s3 or tables) in regularly used scripts or queries, so a change

in volume may indicate a change in the referenced object and potential incident.

Proactively catches: a table name change causing a transformation error,
source systems incorrectly replicated to the warehouse, ETL systems incorrectly
transforming or moving data

Adding advanced monitors

After adding baseline monitors, Metaplane recommends adding more advanced
monitors on the characteristics of the data itself. These monitors should be applied
to data that is well understood in regards to data types or downstream usage.

Numeric distribution

Storing critical metrics for operational teams like sales, marketing, customer
success, and support is one of the most impactful use cases for a data warehouse.

The best way to ensure these metrics are not drifting over time, and therefore

not breaking downstream automations and decisions, is to monitor the distribution
of the data. Metaplane can automatically monitor the mean, minimum, maximum,
and standard deviation of data with the click of a button.

GETTING STARTED WITH DATA OBSERVABILITY | 03

Proactively catches: incorrect manual entry in an upstream sales tool (e.g. a deal was
closed for $10m instead of $1m), bugs introduced into upstream product databases
(e.g. total sale price becomes $0), transformation logic that incorrectly manipulates
or casts data.

Type Description Example Use Case
. . ' ' r aver raer pri ver
Caleulates the arithmetic A dramatic Cha.ng.e in mean fo average order price ove
Mean one day could indicate massive success for the business
average of a column w
or a data incident caused by upstream data entry errors.
In an e-commerce orders table, track the minimum order
. Tracks the lowest value of a : :
Minimum . value to ensure no bugs have been introduced into a
numeric column
checkout flow.
. Tracks the highest value of a In a sales deals table, track the maximum deal value to
Maximum . : : :
numeric column identify the root cause of anomalous changes in revenue.
Tracks the sum of a numeric In a product events table, sum important product usage
column and alerts when the metrics over time. In a revenue table, sum revenue over a
Sum L : : : :
value is higher or lower than rolling window to ensure consistent daily, weekly, and
expected. monthly growth.
Percent zero tracks the This may be important for tracking daily generated sales
Percent percentage of values equal to : : : : :
. . . leads, where an increase in this value over time might
/ero Zero In a given numeric oy " L
indicate a failing sales pipelines.
column.
Percent negative tracks the Some values, such as a purchase amount for an e-
Percent percentage of values less than commerce site should ideally never be negative. You can
Negative Zero in a given numeric additionally track an anomalous increase in returns or
column. customer churn.
Let’s assume historically you’ve received 5 (out of 5) star
Standard Tracks standard deviation in a customer reviews, an uptick in 1 star reviews would
Deviation numeric column. change the variance and might indicate a segment of
customers that ..are unhappy with a new product.

GETTING STARTED WITH DATA OBSERVABILITY | 04

Nullness

An increase in null values is one of the most common silent data bugs - your ETL tool
or transformations successfully landed some data in your warehouse, but a particular
field contains an abundance of null values, which could be an error with source
application database storage or just a pixel that isn’t capturing records correctly.
Whether you have data that should never be null, or data occasionally allowed

to be null, Metaplane can automatically monitor this over time.

Proactively catches: transformation bugs that fail to successfully join data, upstream
product bugs that cause data to be missing, ETL syncs that miss data.

Uniqueness

Some values that you randomly generate, such as session IDs, user |IDs, and/or values
used for primary keys, should always be unigue (or mostly unique). An increase in the
percentage of unique values within a column can cause problems with joins
downstream and indicate an issue with value generation for that column or data
generation overall.

Proactively catches: duplicate primary keys, duplicate data, data drift.

Cardinality

Warehouses often store categorical data such as locations of business, dates,
product brands, and other important enumerations of data. To protect against
unacceptable values, add cardinality monitors to ensure that the data consistently
has an acceptable set of values.

Proactively catches: the incorrect addition of new enum or acceptable values,
software bugs that introduce misspelled values or differing capitalization

GETTING STARTED WITH DATA OBSERVABILITY | 05

How to monitor for
your business requirements

Every business, over time, develops use cases in data quality monitoring unique to
them. To address use cases for focusing monitors on certain segments of the data,

or any other edge case you may have, Metaplane offers: Partitioned Monitors and
Custom SQL monitors.

For example, you may have a revenue recognition method that requires data to be
merged from two disparate systems, and then cross referenced with a third system
that has projections. You may also want to just focus monitoring on the

Partition monitors

By default, Metaplane applies monitors to tables and columns in the aggregate,
helpful for identifying anomalous behavior across your entire warehouse. For your
most critical data, it's important to monitor specific segments; for example:

« Sales/Revenue: Monitor changes in revenue by important properties like regions

or sales reps, depending on your business. This helps identify insights and track
performance accurately.

» Marketing: Monitor volume, freshness, and distribution of data based on
marketing channels to identify replication issues or changes in marketing

performance. For example, accurately replicating data from Facebook but not
LinkedIn can cause downstream conversion reporting mistakes.

* Product: Ensure consistent and complete data for every product type, especially

for product events. Segmenting and monitoring this data helps identify silent data
bugs or changes in product behavior.

We recommend using these monitors for any raw tables used in the analytics use
cases above.

GETTING STARTED WITH DATA OBSERVABILITY | 06

Custom SQL Monitors

Metaplane can apply the same automated machine learning capabilities to any query
that runs in your warehouse and returns a scalar value or a set of values. Use custom
SQL monitors to observe anything in the warehouse that is not covered by our one-
click enabled monitors, such as:

* Metrics that aren’t represented by one column: if you want to monitor a business
metric, such as a conversion rate, that is not materialized in one column, simply
write a SQL query that calculates this metric.

« Data reconciliation across multiple tables: ou may want to ensure that a 1:1
relationship of two tables is maintained, with simple count(*) statements.

Proactively catches: metric drift, acceptable value failures, warehouse
cost increases, warehouse gueue backlogs, your unique business logic.

Where to add monitors

Good candidates for Freshness + Volume monitors

REVENUE

FIVETRAN

SALES_CONNECTOR
TRANSACTIONS

=8 LINE ITEMS 2 v

== REVENUE

Good candidates for
distribution monitors

ORDER_METRICS FULFILLMENT

:=M ORDERS 2 SHIP_STATUS 2 v
S
6 Order Workbook }\

. Orders with errors
:

INVENTORY

INVENTORY

ACTIVE_SKUS

INVENTORY

STOCK_LIST 2

4P

o % <+ ORDERS v <+ oo Filter by 0 Fivetran v Snowflake v (.) Looker v

In some cases, you may want coverage across every single object within your
warehouse, but there may be some setups, such as when you’re not actively using

every object, that you may only want to focus on the objects that are most relevant
to your business.

m
o @

GETTING STARTED WITH DATA OBSERVABILITY | 07

The most obvious place to deploy monitors is wherever you've most recently had a
fire. If you haven’t had any recent fires OR are looking for your next target to place
monitors, here are a few steps that you can take:

1. Find an important “object”: Find a dashboard or table that’s regularly checked,
either with query usage insights from Metaplane, or by asking your data team.

2. Go upstream: Using the lineage graphs offered by a Data Observability
platform like Metaplane, you’ll be able to visually find a schema with raw
data tables that are heavily referenced by your important object from Step 1.

3. Monitor selection: Apply freshness and volume monitors to your raw data
tables from Step 2. Depending on their data types and expected values,
you may also want to add distribution and other monitors.

4. Expand to more tables and monitor types

GETTING STARTED WITH DATA OBSERVABILITY | 08

How to manage data incidents

Incident interactivity

Every organization’s data behaves in different ways. That's why a data observability
tool needs to use machine learning, trained on your organization’s data, to learn
about typical data behavior, and predict how the data should behave in the future.

Data inevitably changes due to seasonality, backfilled data, or SLA variations. Static
thresholds create monitoring nightmares, while ML-based calculations shine with
minor human inputs. Metaplane, a data observability platform, offers user-friendly
ways to provide instant feedback for immediate model adjustments, eliminating
manual threshold calculations and updates. Metaplane provides the following

options:

Mark as normal so that the most recent data point, and data points within
a similar range, will be included into future models.

Mark as "Disabled"” to turn it off. It will retain past training data in the case you
decide to turn it on again.

Reset monitor: In extreme cases, such as significantly changing the volume
or distribution of data in a table, or refactoring entire DAG workflows, you can

retrain the monitor on new behavior.

GETTING STARTED WITH DATA OBSERVABILITY | 12

How to manage data incidents

After setting up baseline and advanced tests, a data observability platform helps
organizations manage data incidents.

A data incident is any data related issue that results in degraded data quality,
causing downstream data consumers to use incorrect or out-of-date data.

Data incidents need to be communicated in a timely manner, provide enough
context to understand priority, help loop in teammates and data consumers, and
be interactive so that your data monitoring can evolve with your data over time.

Today v

Data Engineer 7:49 AM

e Hey, we are experiencing a delay in our data so the
"Active Users" dashboard is inaccurate. We are working
on a fix now!

Incident context helps you answer questions like what caused this issue?
What downstream tables and dashboards are impacted? Should | drop what
I’'m doing and fix the problem?

A collaborative incident empowers data teams to pull in data engineers
to triage issues and makes it simple to broadcast updates to data consumers
and stakeholders.

Every incident needs to be interactive so that you can easily give feedback
to the machine learning models, mute transient issues that are being fixed,
or integrate with workflow automations.

GETTING STARTED WITH DATA OBSERVABILITY | 09

https://docs.metaplane.dev/docs/incidents

How to manage data incidents

Incident context

Every data incident needs to provide enough context so the data team knows what
caused the incident and what is impacted downstream. It's not enough to just find
out about these issues - a data engineer needs context so they can prioritize
incidents relative to the other work on their plate.

To help prioritize incidents, a data
observability platform can provide
context like:

« What is upstream from the
impacted data? Could this be
the root cause?

 What related data is also
broken? How widespread is
this issue?

« What is downstream from the
impacted data? Are there
dashboards or marketing
automations that are now
broken?

Amount of time elapsed since table was last updated is higher than expected.
Link:

Current status: ? Open Opened at: 2023-04-28 11:10:51 AM
Expected: 2.6 hours Actual: 4.9 hours (+89%)
Upstream Fivetran connectors (1)

DATA SYNC.MONGO CTP.NEST EVENT PARTICIPATION | Expected: 2.6 hours | Actual: 4.9 hours

(+89%)

(27 kB)

Acknowledge for... v Mark as normal

Metaplane tracks your team’s history of incidents over time. An incident can group together

related issues, impacted Bl dashboards, and provide a way to interact with the machine

learning models.

GETTING STARTED WITH DATA OBSERVABILITY | 10

How to manage data incidents

Incident collaboration

Every incident is an opportunity to preserve trust in your data. Rather than being the
last to find out about data quality issues, data observability tools help your team flip
the script and proactively let teammates and stakeholders know about incidents.

A data observability platform can make
collaborating on incidents easier by:
. “ —~ Head of Sales 11:23 PM
¢ Sendlng YOU alertS Where YOUI’ BEFORE DATA @ Hey #data-team ,why does the revenue
OBSERVABILITY dashboard look broken?
team already works

 Allowing data teams to configure ‘ S = R VABTE S,
iIncident alert destinations Metaplane 3minutes ago
@o New incident opened

Row count of ANALYTICS.REVENUE is lower than expected

* Providing a way to acknowledge
incidents and easily tag teammates , ﬂ

Data Lead 3 minutes ago

Looks like there was an issue
with the migration.

@

Py N

* Making it easy to broadcast
messages to teams that rely on
the data impacted by the incident

Data Engineer 2 minutes ago

Already on it! |

Configuring incident alerting channels and workflows is vital as your data team scales. It
ensures relevant notifications are seen and handled promptly. Two commons ways to do
this are:
« Team-based tag example: You can tag objects used in engineering analytics as "eng", so
that you can easily apply similar monitors across the entire set.
* Importance based tagging example: You could also tag key objects as "critical" or
assign severity levels unigue to each schema. Each incident severity level can then be
routed to its own channel for faster prioritization.

TIP Invite at least 2 stakeholders per grouping of objects to a slack channel

IIII GETTING STARTED WITH DATA OBSERVABILITY | 11

Proactive incident prevention

Lineage graphs for schema change planning

FIVETRAN

SALES_CONNECTOR

~N

4/

~

ACCOUNTS

S @) Accounts Dashboard
RENEWAL_DATE 6 v 7

%
.)
Renewals Dashboard
J
.)
Sales Leaderboard
J

Column and table level lineage graphs have multiple uses, including understanding
monitor deployment and preventing data incidents. These graphs show where tables
and columns are referenced downstream, helping to avoid schema changes and
identify queries that need updating.

(,’O

Improve warehouse speed while reducing consumption costs

In addition to monitoring your data, monitoring your queries acting on your data is
another key functionality to help you avoid incidents. Over time, queries can degrade
in performance as their reference objects grow in size while optimization falls to the
wayside. In the worst case, downstream job dependencies can cause failures when
queries don’t execute in time. With Data Observability, you’ll be able to identify long
query runtimes to help you focus your query cleanup efforts, saving both
(execution) time and money.

Performance / Query Execution Time (ms) Snowflake Analytics /| € ANALYTICS_PROD |/ %2 CORE

I9th Joth o0th ORDERS_HISTORY_DAILY query usage
10000
Nov 29 — 444 queries > MTWTFS
. T
7500 111
o e
Be
O
2500 By Role By User
DBT_USER 48 DBT _USER 48
0 METABASE_USER 384 METABASE USER 384
Apr 20 Apr 21 Apr 22 Apr 23 Apr 24 Apr 25 Apr 26 HIGHTOUCH_USER = 12 RIGHTOUCH_USER = 12

IIII GETTING STARTED WITH DATA OBSERVABILITY | 13

Avoid breaking reports and models with Data CI/CD

With our Github integration, you’ll be able to understand the impact
of any pending Pull Requests on your data.

Query / Model Change

o models/staging/stg_payments.sql

payment_method,

unt 1s current

to (ﬁ)li"l‘] i1IrS OK

In this example' We've Changed Our - amoﬁnt / 100 as amount

calculation for converting a smaller

currency denomination to a larger one
(i.e. dividing by 100 — dividing by 120)

from source

ly stored in cents, so we convert]

payment_method,

+ ~ o~) - = Lo
0 dollars ok

amount / 120 as amount

from source

What objects are
impacted?

You’'ll be able to
immediately see that a
few other tables in the
warehouse and
workbooks (dashboards)
in the business
intelligence tool will be
impacted.

metaplane

Lineage report

Total potential impact: 4 unigue downstream items across 1 changed dbt models.

models/staging/stg_payments.sql

May impact 4 downstream items
may impact 2 downstream table

may impact 1 downstream sigma_query

may impact 1 downstream sigma_workbook

Does this affect any other
models?

In this example, the orders
model/table also depends on
our stg_payments model, so
we’ll surface monitor breaches
that will occur as a result of our
pull request.

metaplane-staging

Test preview report

A Test Warnings: 9/60

» models/customers.sql A\ 2/19

v models/orders.sql A\ 6/27

Column Tests

Column Name Test Type
GIFT_CARD_AMOUNT MEAN
BANK_TRANSFER_AMOUNT MEAN
AMOUNT MEAN
CREDIT_CARD_AMOUNT MEAN
COUPON_AMOUNT MEAN

AMOUNT UNIQUENESS

» models/staging/stg_payments.sql A\ 1/14

main test-30 Change
2.0707 1.7256 V16.67%
4.1515 3.4596 V16.67%
16.8889 14.0741 V16.67%
8.798 7.3316 V16.67%
1.8687 1.6672 V16.66%

32.3232% 35.3535% 73.03%

GETTING STARTED WITH DATA OBSERVABILITY | 14

i

. \ ..
. uﬂs..‘.\vdulira
‘ur.w{— qw ,V\tv-...an... - oA

g 3 A X
RN nv. \-. m..a.v\mmovﬁ.. uyw.yflw_‘
ol ,v..f...‘ Py Y r....\\v. iy

Yaa -~ ~»..\\ o :

=
e
e

