i metaplane

The essential data
observability handbook

Proven techniques for modern data teams

FEATURING EXPERTS FROM:

Q©spoton VERONICA BEARD

Table of contents

Preface
l. Prioritizing Data Observability: Why Now?
1. Trust is easy to lose and hard to regain
2. Data loss is a problem that never goes away
3. Historical data is a compounding asset
4. Move fast, without breaking things
5. Prioritize what matters
Il. The Four Pillars of Data Observability
How can we derive the four pillars?
Metrics: internal characteristics of the data
Metadata: external characteristics of the data
Lineage: dependencies between data
Logs: interactions between data and the real world
Putting it all together
Putting the pillars to work

Case study: How SpotOn reduced time to actionable data using Metaplane
Scaling analytics capabilities with Snowflake, dbt Cloud, and Metaplane

Metaplane: the final piece of the puzzle
lll. Should You Buy, Borrow, or Build a Data Observability Tool?
Option #1: Build a custom, in-house tool
Option #2: Leverage an open-source tool
Option #3: Buy an out-of-the-box tool
Case study: How Veronica Beard set up a good looking data stack
Setting up a net-new data stack
Using Metaplane to guarantee data quality
IV. How to Evaluate Data Observability Tools
Benefits of data observability tools
Scope of Evaluation
Strategies for Evaluation
V. Mistakes to avoid when implementing data observability software
1. Lack of Clear Objectives
2. Neglecting Data Quality Issues
3. Overlooking Scalability Requirements
4. Ignoring User Training and Adoption
5. Neglecting Continuous Monitoring and Optimization
VI. What's the ROI of Data...Observability?
What'’s next?

© 00 00 N NO O O oo bW

W W NN DNDNDNDNDNDNDNDNDNDNDNDNDNNNONNA A AA@D A a@Q A a
N = © © 00 0 NNOOO” PPN =200N~NOGP>BWWDNOO

Preface

“When people buy a drill, what they really want is a hole.” Harvard marketing professor
Theodore Levitt often used this phrase to nudge his students into looking beyond the
immediate task at hand to consider the ultimate objective. What's the real goal here?

So, let's apply the same concept to data. If we're honest, nobody's excited about
managing heaps of data just for the sake of it. The real goal is to extract value, drive
decisions, and power our operations and products with real, actionable insights.

Today, this isn't easy: data teams centralize, transform, and expose an increasing amount
of data from an increasing number of data sources that serve an increasing number of
stakeholders in an increasing number of use cases.

The problem is that more data means more surface area to maintain. As maintenance
overhead increases, data breakdowns become more frequent and severe. This causes the
downstream functions that depend on data to falter, which leads to degrading trust in
data by stakeholders.

Enter data observability.

. Data observability is the degree of visibility you have
into your data at any point in time.

It exists to ensure data quality and increase trust by providing insights deep within your
data pipelines and infrastructure and answering these generic questions:

e /s the data "right”?

e How up-to-date is this dashboard?

e Why did the report break?

The purpose of this e-book is to equip data folks like you with everything you need to be
a data observability champion. We want to empower you to advocate for better data
visibility, integrity, and accuracy—starting with the obvious question: Why now?

Metaplane | The Essential Data Observability Handbook: Proven Techniques for Modern Data Teams

I. Prioritizing Data Observability: Why Now?

After speaking with hundreds of data leaders ranging from high-leverage solo teams at
startups to decentralized data teams with 50+ members at Fortune 500 companies, one
thing is clear: data is becoming ubiquitous regardless of the size, industry, or makeup
of companies.

Every company we've spoken to uses data in various ways, helping drive critical
business decisions in product, marketing, sales, and finance. As data is operationalized,
data leaders have shared with us that data quality is one of their top priorities, and that
better observability is a sustainable solution.

One of the most common questions we receive is: when is the right time to become
proactive about data quality by building a tool in-house or adopting a data observability

platform?

From our perspective, there are five important reasons why you should consider making
data quality a priority now, instead of waiting until it becomes an issue.

Five Reasons to Prioritize Data Observability m
Why wait for something to go wrong?

1. Trustis easy to lose and hard to regain

. Dataloss is a problem that never goes away
. Historical data is a compounding asset

. Move fast, without breaking things

Reasons to prioritize data observability range from the immediate cost of data to the abstract, but equally
important, need to maintain trust in data.

o »~ W DN

1. Trust is easy to lose and hard to regain

As data people, our goal is to enable other teams to ask questions and make informed
decisions. Two necessary ingredients are data and literacy. But the other necessary
ingredient is trust. Without trust in data, stakeholders rely on their own splintered
datasets and siloed data usage or second-guess your data. And while skepticism is good;
lack of trust is not.

Not only is trust lost with individuals who made incorrect decisions using your team'’s
data, but distrust in data trickles throughout organizations and results in less data-driven
or siloed decision-making. Plus, as modern data teams increasingly adopt data mesh
architectures and self-serve analytics, new, autonomous teams need to be able to use
and trust data to make important decisions in their own domains.

2. Data loss is a problem that never goes away

Data loss is the bane of our existence. Losing data deteriorates trust, creates data debt,
and honestly, can be painful. If data is missing from a data model, then it generally
complicates joins and transformations, injecting conditionals and logic into what should
otherwise be a simple SQL query. When data is used in dashboards, gaps need to be
annotated and explained to stakeholders, or you're at risk of making incorrect decisions.

Worst of all: missing data never goes away, and backfilling what can be backfilled can be
challenging. Every time you onboard a new employee, create or update models, or change
dashboards, you need to consider missing data. Of course, s*** always happens, but
proactively monitoring data quality can decrease the frequency of data loss, and early
detection can decrease the severity when it happens.

3. Historical data is a compounding asset

Analytics products provide a historical record of usage to answer questions like: how do
users use our product? How does the present moment compare to the past? What is the
impact of this feature?

Analogously, we see data observability tools like historical baselines (e.g. row counts over
time), anomaly detection, and incident reporting, to name a few, unlocking new powers
for data teams and helping prove how valuable their work is for the larger organization.
The good news is that, like data itself, once you begin collecting metadata, it becomes a
compounding asset. Each day imparts a new data point for richer historical comparisons
and increased statistical power. That leads to a better understanding of and trust in your
data.

https://martinfowler.com/articles/data-mesh-principles.html
https://metaplane.dev/blog/backfilling-data-in-2023

Metaplane | The Essential Data Observability Handbook: Proven Techniques for Modern Data Teams

4. Move fast, without breaking things

In the pre-observability world, engineering teams commonly deployed infrastructure with
simple heartbeat checks. Fortunately, observability products granted detailed visibility
into all aspects of infrastructure, so teams could proactively detect system degradation
and have the metadata (“traces”) needed to debug. This cut down on time along four
dimensions: time to identify an issue, time to diagnose the root cause, time to fix the
issue, and finally the time to verify the fix. All of these steps roll up into
time-to-resolution.

Teams don’t want to just decrease time to resolve individual issues; they also want to
reduce the frequency and severity of issues. With more observability, the root causes of
issues can be identified and fixed, helping engineers spend less time debugging and
fixing issues and more time on the things they actually want to work on.

5. Prioritize what matters

How do you make decisions about what to work on when you don’t know what the
baseline or bottlenecks are? For example, without knowing the runtimes of your dbt
DAGs, which models need to be optimized? Without knowing which tables experience
freshness issues, how do you know which transformations to prioritize? Without
knowledge of the most important dashboards, how do you know which data quality issue
to prioritize first?

Data teams can help other teams prioritize their work. But
what about our own work? Spending time putting out the
most recent big fire is not only unenjoyable, but also
unproductive and unsustainable.

Now that we've established the urgency of prioritizing data observability let’s get into the
meat of effective data observability practices: the Four Pillars of Data Observability,
which serve as the cornerstone for building a robust, transparent, and resilient data
infrastructure.

5 Tips for Implementing Data Observability Get the guide 2

https://greatcircle.com/blog/2018/04/24/how-to-improve-your-incident-response-times/
https://www.metaplane.dev/resources/5-tips-for-implementing-data-observability?utm_source=ebook&utm_medium=essential_data_observability_handbook&utm_campaign=ebook_repurpose

Il. The Four Pillars of Data Observability

Data Observability draws inspiration from Software Observability, though there are
important differences like the lineage between pieces of data and the components of a

data system.

Because of those differences, the three pillars of Software Observability don’t quite
address the needs of data teams, whether they’re DataOps, data engineering, data
science, data analytics, or analytics engineering teams. Like my old computer science
professor would say, compared with software, data management is "the same, but
completely different." The overarching similarity, though, is the goal of increasing
visibility into their data systems over time.

Four Pillars of Data Observability nm

The categories of necessary and sufficient information
to describe the state of data at any point in time

Characteristics Relationships
Metrics Metadata Lineage Logs

Internal External Dependencies Interactions

characteristics characteristics within data with world

Examples Examples Examples Examples
Uniqueness, cardinality Schema, freshness, Table-level lineage, Queries against table,
numerical distributions, number of rows column-level lineage, fetches of dashboard,

nullness value-level lineage source-to-target
replication

How can we derive the four pillars?

In that spirit, we ask: what can we know about your organization's data to derive its state
at any point in time? We add two additional constraints: we want to minimize the number
of pillars to be maximally concise while making sure that they’re orthogonal to maximize
the information value of each.

We look at a concept of thermodynamics: the intensive and extensive properties of
materials. Intensive properties do not depend on the size of the material. For example, the

https://www.metaplane.dev/blog/data-observability-vs-software-observability
https://www.metaplane.dev/blog/data-observability-vs-software-observability
https://www.datadoghq.com/three-pillars-of-observability/
https://en.wikipedia.org/wiki/Intensive_and_extensive_properties

temperature, density, pressure, and viscosity of a material do not depend on how much
material there is. One cup of water can have the same temperature as an entire ocean.

Metrics: internal characteristics of the data

In the world of data, the analogy to intensive properties are properties of the data itself.

If the data is numeric, properties include summary statistics about the distribution like the
mean, standard deviation, and skewness. If the data is categorical, summary statistics
of the distribution can include the number of groups (e.g. the uniqueness).

Across all types of data, metrics like completeness and
accuracy can be computed to describe the data itself.

These are all different data quality metrics that describe some aspect that summarizes
the underlying data, whether they’re calculated for data tables at rest in a warehouse or
data in transit in data pipelines.

Metadata: external characteristics of the data

In contrast, metadata is an external property, frequently defined as “data about data.”
We'd take this a step further and add that metadata is “data about data that is
independent of the data itself.”

Direct analogies to the world of data include properties like data volume (humber of
rows), the structure of data (schema), and the timeliness of data (freshness).

While the volume, schema, and freshness of data have an
impact on the internal metrics, they can be scaled
independently while preserving the statistical
characteristics.

Conversely, the internal characteristics of data can change without impacting the volume,
schema, or freshness. Together with metrics, metadata can be used to identify data
quality issues.

https://www.metaplane.dev/blog/data-quality-metrics-for-data-warehouses

Metaplane | The Essential Data Observability Handbook: Proven Techniques for Modern Data Teams

Lineage: dependencies between data

Using metrics and metadata, we can describe a single dataset with as much fidelity as we
desire.

However, datasets in the real world often do not exist in
isolation, landing in a data warehouse with no relationship
to each other.

We can draw another analogy from the physical sciences, where systems can be modeled
within themselves, but our understanding can be enriched by modeling interactions. For
example, thermodynamic systems have smaller components with internal interactions,
and also have interactions with the external environment.

Within the data world, the primary internal interaction is the derivation of one dataset
from another. Datasets are derived from upstream data and can be used to derive
downstream data. These bidirectional dependencies are referred to as the lineage of
data (also called the provenance), and range in level of abstraction from lineage between
entire systems (this warehouse depends on those sources), between tables, between
columns in tables, and between values in columns.

REVENUE 6 R

FIVETRAN
- :=ll REVENUE 2
‘* SALES_CONNECTOR

TRANSACTIONS

:=l LINE_ITEMS 2

FULFILLMENT
INVENTORY ORDER_METRICS

=0 ALL_SKUS 2 (v :=ll ORDERS 2 v :=8 SHIP_STATUS 2

INVENTORY 6 shi

:=l ACTIVE_SKUS
INVENTORY 6 Order Workbook
;=0 STOCK_LIST 2

> EET N ©

> % + ORDERS

+

Filter by 9 Fivetran = G Snowflake E @ Looker

Example of column-level lineage visualized in Metaplane (Source: Lineage & Impact Analysis)

https://www.metaplane.dev/platform/data-lineage
https://www.metaplane.dev/platform/data-lineage

Logs: interactions between data and the real world

With metrics describing the internal state of data, metadata describing its external stage,
and lineage describing dependencies between pieces of data, we're only missing one
piece: how that data interacts with the external world. We break these interactions into
machine-machine interactions and machine-human interactions.

Machine-machine interactions with data include movement, like when data is being
replicated from data sources like transactional databases or external providers to an
analytical warehouse by an ELT tool.

Interactions also include transformations, like when a dbt job transforms source tables
into derived tables. Logs also document attributes of these interactions (e.g. the amount
of time that a replication or transformation takes, or the timestamp of that activity).

Crucially, logs capture machine-human interactions
between data and people, like data engineering teams
creating new models, stakeholders consuming dashboards
for decision-making, or data scientists creating machine
learning models.

These machine-human interactions contribute to an understanding of who is responsible
for data and how data is used.

Putting it all together

With metrics describing the internal properties of data, metadata describing the external
properties, lineage describing the dependencies, and logs describing the interactions, we
have four levers that we can pull to fully describe the state of our data at any point in
time.

10

Lineage @
Dependencies between data
E.g. derivation of one column from another

\
Metadata

External characteristics of data
E.g. freshness, volume, schema

Metrics Logs
Internal characteristics of Interactions between data and real world
data E.g. distribution, nullness E.g. ingestion, transformation, consumption

The four pillars of data observability: metrics, metadata, lineage, and logs.

Without any one of the pillars, our ability to reconstruct the state of data is incomplete.
For instance:

Without metrics, we don’'t know about the internal properties of the data itself,
making alerting based on real-time anomaly detection on metrics impossible. If we
only had metadata, we would know the shape, structure, and timing of data, but
not necessarily whether we had bad data.

Without metadata, we don't know the structure, structure, or timing of data,
making use cases like schema change detection or satisfying Service Level
Agreements (SLAs)—which are critical to improving data reliability and decreasing
data downtime—impossible. If we only had metrics, we would know whether the
data is correct, but not necessarily if it was refreshed in an appropriate amount of
time

Without lineage, we don’t know how different pieces of data depend on each
other, making it difficult to conduct triage workflows like upstream root cause
analysis and downstream impact analysis. If we only had metrics and metadata, we
have a holistic view of the health of data, but an incomplete picture of how issues
are related

Without logs, we dont know how external systems like ELT/ETL and
transformation tools impact our data and how external users are impacted by our
data. We know how data is related (via lineage), but not necessarily how important
those relationships are or who is responsible for upstream changes.

Missing any one of four pillars would be a meaningful gap in a data observability tool or
program. But at the same time, other categories of information are redundant with one of
the four. Therefore, these four pillars are necessary and sufficient.

"

https://www.metaplane.dev/platform/anomaly-detection
https://www.metaplane.dev/platform/schema-change-alerts
https://davidsj.substack.com/p/five-nines-three-nines-no-nines
https://davidsj.substack.com/p/five-nines-three-nines-no-nines
https://en.wikipedia.org/wiki/Necessity_and_sufficiency

Putting the pillars to work

Getting started with building up these pillars is a project of not letting the perfect get in
the way of good. Most data teams in 2023 have little information about their systems, so
the first step is to just get started. Here’s how to get going:

1.

Start by identifying the most important tables and the data quality metrics from
those tables. Typically the easiest place to start is with data at rest within a data
lake or data warehouse, then extending upstream into data in motion. Like with the
rest of the pillars, profiling at one point in time is useful but insufficient for spotting
poor data quality, requiring periodic checks over time.

Metadata is often provided out of the box by your data warehouse, with
warehouses like Snowflake and Google BigQuery providing snapshots of the row
count, schema, and last update time of tables in INFORMATION_SCHEMA. You can
begin by storing that metadata in a separate table and then tracking changes
over time.

Lineage can be a bit more challenging. Inferring the lineage between tables and
columns is a difficult task that involves detailed query parsing, but some
open-source libraries provide a starting point. If you use a workflow tool like dbt or
dagster or Prefect, you're in luck—you can start ingesting the transformation
metadata generated by those systems. Data integration tools like Fivetran also
increasingly provide lineage metadata.

Storing and parsing logs is highly dependent on the tools in your data stack,
though often ELT/ETL and BI tools in the "modern data stack" will provide an API
for accessing those logs, and your warehouse will likely store query history.
Sometimes, these APIs will even provide you with analytics about when and how
data analysts and stakeholders are using your data products.

Now, if you don’'t have the bandwidth to build systems that collect metrics, metadata,
lineage, and logs of your data assets, don't sweat it. There’s a whole ecosystem of
commercial and open-source data observability solutions that automate the collection of
this information, synthesize it into a usable form, and integrate it with the tools you
already use.

And that's exactly what SpotOn capitalized on to save engineering time and continuously
receive context about potential root causes and downstream impact when data incidents

arose.

12

https://www.metaplane.dev/blog/data-quality-metrics-for-data-warehouses
https://www.metaplane.dev/blog/column-level-lineage-an-adventure-in-sql-parsing
https://www.metaplane.dev/blog/the-definitive-guide-to-snowflake-data-lineage
https://getdbt.com/
https://dagster.io/
https://www.metaplane.dev/state-of-data-quality-monitoring-2021
https://www.metaplane.dev/state-of-data-quality-monitoring-2021
https://www.spoton.com/

Case study: How SpotOn reduced time to
actionable data using Snowflake, dbt Cloud,
and Metaplane

o S OtOn Industry 6X
P Mobile payments Decrease in time to

actionable data

) { m i 8.5x

Size
1200 employees Increase in engineering
contribution

SpotOn is a rapidly growing business that offers mobile payment processing and
management software for restaurants and small businesses. As the company has scaled,
data has increasingly become a differentiator to drive the business forward. More than
500 team members rely on data to make daily decisions and SpotOn’s customers rely on
data for merchant reporting and a recommendation engine to power better online
ordering experiences.

With this widespread integration of

O spoton data across the business came
We were always behind the 8-ball in terms of new challenges for the data team.
communicating with the executive team when there Ben Cohen, the Data Engineering

was an issue. We were starting to lose trust and they .
weren’t going to use the reports. If they can’t move Team Lead at SpotOn, and his
forward on using this data, that’s bad not only for our team were running into bottlenecks
team but also our business. Metaplane helped us get in in the performance, accessibility,

front of those issues. i '
and engineering workflows for
% Ben Cohen)< ¢ @ o | iterating on data.

Data Engineering Team Lead b

aVe
k/\3

o

()

The performance of their Postgres
database was routinely slow, causing delayed ETL jobs and degraded BI reporting

13

https://www.spoton.com/

experiences. The database was undersized and tuning was difficult; data was either
missing or delayed.

These performance issues had a ripple effect—data was not accessible because it was
often slow or broken. Users were unable to run queries because resources were being
consumed by upstream ETL jobs for several hours every morning. New and advanced
analytics use cases were impossible to create on top of the existing warehouse because
Postgres couldn't handle reprocessing large-scale data aggregations.

With these challenges in mind, Ben decided to implement Snowflake, dbt, and Metaplane
to scale the analytics capabilities and create a new team culture, all without adding
complexity or cost.

Scaling analytics capabilities with Snowflake, dbt Cloud, and
Metaplane

dbt

6‘r'neltono — I I ™ 4 tableau

*~
\ S L

‘\\\ Fivetran +— Raw Data —> Metabase
— *~—

Il Heap . >) spoton

> il metaplane <

When Ben and his team migrated from Postgres to Snowflake, new advanced analytics
use cases were immediately possible. For example, the recommendation engine for online
ordering platforms is powered by large-scale pre-aggregated data that is augmented
from multiple sources. Whereas Postgres could not support these types of aggregations,
Snowflake was able to handle this gracefully because of the scaling capabilities provided
by the separation of storage and compute.

14

Snowflake also became a key part of data integration after SpotOn acquired Appetize,
who was also already a Snowflake customer. The data team was able to securely and
instantaneously share data between SpotOn and Appetizes’ Snowflake instances. The
performance improvements led to faster reporting load times and more advanced
analytics use cases. To make this data even more accessible and improve engineering
workflows, Ben and his team migrated all existing models to dbt Cloud—financial,
operation, sales, and product analytic data were all transformed using dbt. With this core
business logic in dbt, the data team’s workflow became much easier due to greater
collaboration and accessibility.

o SpotOn

As stakeholders use
more data and have
new capabilities,
they ask more from
your team, and you
need to move
quickly. You can’t
test everything
yourself. The other
way to scale is to
hire more people
that add data
quality checks, but
that doesn’t scale
well from a cost and
efficiency
standpoint.

- Ben Cohen
ry Data Engineering Team Lead

1]

*>®

After SpotOn switched to dbt Cloud, creating data
models went from taking days to hours. dbt quickly
became the workhorse that powered the entire
SpotOn warehouse, internal Bl, and analytics. But as
they improved performance and made the data more
accessible, Ben noticed that they created a data
feedback loop: more capabilities allowed the entire
organization to move more quickly, which resulted in
more teammates asking for data and analytics.

On the one hand, this feedback loop was driving
SpotOn’s entire organization to leverage data and
make more informed decisions. But with this came
more attention and scrutiny to the data team’s work,
and trust in data became top of mind for the data
team.

Metaplane: the final piece of the puzzle

Metaplane was able to help the SpotOn data team
scale this feedback loop. By providing observability
across their data stack, the team was able to build and
retain trust so the feedback loop and usage could
continue. With Metaplane’s machine learning-based
testing approach and ability to automatically add
hundreds of tests, they saved engineering time and
always received context about potential root causes
and downstream impact when data incidents arose.

By proactively catching data incidents, Metaplane helped Ben’s team get in front of any
issues that would impact downstream stakeholders, helping the data team regain trust in

15

the data. After receiving data incident alerts, Ben and his team could pull back scheduled
reports until they were able to verify that the data was fixed after an issue.

Ben’s team went from chasing down data bugs and data anomalies to proactively finding
out about them and spending more time actually fixing the issues. Time-to-identify data

quality issues went from hours or days to seconds.

Read more stories at: metaplane.dev/customers

Though they now have an ideal data stack, Ben’s team started with little more than the
four pillars of data observability.

o SpotOn

Metaplane is key to preserving trust in our data. You’ve
spent so much time to move to this great modern
stack, but if the end result is you lost people’s trust
and they won’t use it, that work is for nothing.

. Ben Cohen x > Iﬁ. _—
P“ I Data Engineering Team Lead anr - ¢

Now, if youre wondering how SpotOn decided whether they should build a tool
themselves, borrow an open-source tool, or buy an out-of-the-box tool, here’s the
consideration framework they (and many others) followed.

16

https://www.metaplane.dev/customers

l1l. Should You Buy, Borrow, or Build a Data
Observability Tool?

Developers often debate whether they should buy or build the software they need to do
their jobs, and data engineers are no exception.

Now, here’s the tough news: There is no one-size-fits-all answer to the debate. Instead,
you must consider all relevant factors when making a decision.

To make things a little easier on you, we'll lay out the pros and cons of building your own
tool, leveraging an open-source tool, or buying an out-of-the-box tool, considering
everything from time and money to customization and compliance (and everything in
between).

Option #1: Build a custom, in-house tool

Building a custom, in-house data observability tool is exciting to some but daunting to
others. Like any initiative, it comes with clear benefits, costs, and risks.

Benefits

1. Context: When you build something from scratch, you have an intimate understanding
of what it is and how it works.

2. Customization: Building in-house allows you to design a tool that meets your
organization’s unique needs. It's a great option if you want to embed the technology
into a custom workflow or build features that aren’t widely available!

3. Compliance: If security and compliance are important to your company, you may
prefer to build in-house. After all, that’s the easiest way to retain custody of your data.

Costs

%,

1. Time: Developing a custom-built tool requires lots of engineering hours, both upfront
and on an ongoing basis. So, unless you have a dedicated data infrastructure
engineer, this work will always be a distraction from your team'’s core responsibilities.

2. Money: While not as expensive as commercial solutions, custom-built tools do cost
money. You need to pay for hosting and account for the wages of the team members
who build the tool (both upfront and on an ongoing basis).

3. Expertise: When you build in-house, you lose out on the product and engineering
expertise that commercial and open-source tools have to offer (and which have been
pressure-tested by countless organizations).

17

Risks

You will probably underestimate the number of engineering hours it will take to build and
maintain the tool. It’s also likely that your team doesn’t have the skills necessary to
optimize the uptime and stability of the application. After all, they aren’t DevOps experts.

Option #2: Leverage an open-source tool

Using an open-source tool to build a custom application can offer the best of both worlds,
but it can also be a risky venture.

Benefits and Costs &

Time: By leveraging an open-source tool, you can spend much less time building the
application, but make sure you account for the added time spent integrating your
custom solution with that other system, plus the hours it takes to continuously update
to the latest version.

Money: Like with custom-built tools, you must pay for the hosting yourself. You'd also
need to pay the open-source tool provider which often increases over time.

Support: You don’'t get commercial-level support when you leverage an open-source
tool. No one will tell you exactly how to fix your problem, but you will get access to a
passionate community of developers who regularly report known bugs and openly
share their knowledge with each other.

Customization: You may be able to customize your tool to meet your needs—or you
may not. It really depends on the architecture used by the open-source tool.

*) Risks

It's not unusual for open-source tools to go dormant. If supported by a for-profit company,
the company’s strategy may change, or they may simply go out of business. If supported
by an individual or group of individuals, their passions may change, or they may direct
their attention to more profitable ventures.

Option #3: Buy an out-of-the-box tool

Buying a commercial tool is the easiest way to adopt data observability. You pay money,
and you gain access to ready-made software.

Benefits

Time: Buying an out-of-the-box tool requires the least amount of engineering hours
and offers the fastest time to value. In fact, you don’'t have to build anything. All you
need to do is purchase, implement, and configure the tool to suit your organization’s
needs.

18

2. Expertise: When you buy a tool, you automatically get the product and engineering
expertise that comes with it. With professional software engineers continuously
monitoring and improving the uptime of the application, most days you'd have nothing
to worry about—and any downtime that does slip through would be minimal compared
to an in-house tool.

3. Features: Commercial tools typically have larger feature sets than in-house tools,
since they must cater to a wide range of customers. Data observability tools like
Metaplane offer testing and anomaly detection, schema change and job monitoring, as
well as lineage and usage analytics features, among others.

4. Support: No tool is perfect, and commercial tools are no expectation. But when
something goes wrong, technology companies typically offer some type of support.
Here at Metaplane, for example, we create shared Slack channels to ensure your
concerns are addressed as quickly as possible, and offer service-level agreements
(SLAs) to ensure we meet your expectations.

5. Longevity: Commercial tools are more likely than either open-source or custom-built
tools to still be around years from now. Their founders and leaders are motivated to
make their companies successful, whereas a new employee may not care enough to
maintain your in-house application and the company that sponsors the open-source
tool may stop supporting it.

Costs

%,

1. Money: Purchasing an out-of-the-box tool is the most expensive option. If you have
the cash to spend, it's a great solution—but many data teams still struggle with tight
budgets.

2. Customization: Commercial tools offer the least amount of customization. That said,
you can always provide product feedback and make requests. You just can't guarantee
that they’ll be answered in a timely manner.

*) Risks

While it's more likely that a commercial vendor will still be around 10 years from now, it's
possible that they could go out of business or be acquired by another company with
different priorities.

A recommended order of operations

At the end of the day, you know what option is best suited to your needs. If you're unsure,
consider this order of operations: Look into commercial options first, open-source
options second, and in-house options third. You know better than we do how busy data
teams are. They usually lack either the size or capacity to build a custom, in-house tool.

19

https://www.metaplane.dev/

If that’s true for you, going with a commercial option is probably your best bet. It has the
most benefits, the fewest costs, and the least risk. On the other hand, if customization
and compliance are critical to your team's success, or you have a limited budget but a
larger team with the time it takes to build from scratch, a custom, in-house solution may
be a better option. Only you can make that decision.

But if you do opt for an out-of-the-box tool, you might be wondering, “How do we justify
an investment in data?” The folks at Veronica Beard had that question, too. Here’s how
they did it.

20

https://veronicabeard.com/

Case study: How Veronica Beard set up a data
stack (almost) as good-looking as their clothes

Industry Business leaders trust data
VERONICA BEARD Fashion quality for decision-making
Size Eliminated errors while

\ S
’(\\\ K| 340 employees merging pull requests

Max Lagresle, Veronica Beard’s first data hire and currently the Director of Data, was
originally brought in to implement Segment as a standalone Customer Data Platform to
help the eCommerce and Marketing teams better understand how to drive more sales. In

the process of setup, he found that there was more
opportunity for Veronica Beard to grow through the use
of data. One notable example that stands out is the
need for leadership to understand company-wide sales.
They were willing to put up with one entire week of
latency required for financial reconciliation across those
CSVs.

Setting up a net-new data stack

It's hard to get budget for new initiatives and tooling.
When Max first joined Veronica Beard at the end of
2019 and pitched a data stack implementation, he had
to answer “How do we justify an investment in data?”

This boiled down to 3 core questions:

e What’s the scope of this project and who are the
owner(s)?

e What human resources and technical skillsets do
we need for this project?

e Which tools are you recommending, and what’s
the order of implementation given their use
case(s)?

VERONICA BEARD

By starting with the
ecommerce and marketing
departments, we were able to
prove that we could answer
their questions and use cases.
In the process, we were also
able to demonstrate how
much easier it was to answer
guestions that couldn’t even
be answered before setting up
a warehouse, such as the
difference in lifetime value
between single-channel
customers (e.g. ecommerce or
retail) vs multi-channel
customers (i.e. omnichannel).

@ Max Legresle

Director of Data

N

21

https://www.linkedin.com/in/maximelagresle

Over the course of a year, Max was able to successfully
VERONICA BEARD implement a W:arehouse to answer‘recurring questions and
address questions that were previously too cumbersome
to answer through Excel. Fast forward 4 years, and in
addition to the eCommerce and Marketing teams, the data
team now also supports 6 additional departments (CRM,
Planning & Buying, Retail, Merchandising, Finance,
Wholesale).

We wanted a
solution that we
could grow with, and
the Metaplane team
and product has
been amazing to

work with so far. Using Metaplane to guarantee data quality

Metaplane's team At this point, Max and the growing data team are trusted
are true experts in by multiple departments to handle questions such as:
their domain and e How do we think about planning development?

data industry in e What should store inventory levels be at for maximum
genera| and their opportunity capture?

white —gl ove e How can we improve company operational efficiencies
onboarding has and spend money wisely?

e What sort of product lines have done well and how
should we plan for the future?
e Where are the biggest opportunities for store opening?

been truly amazing.

9 Max Legresle

Director of Data As you can imagine, these questions had direct impacts on

R the company’s bottom line, which was why they began to
“\ evaluate data observability solutions to ensure that
questions were answered accurately.

Like other teams, they had already been using dbt tests alongside their model builds, but
ran into problems with:

1. Scaling the number of tests that they had, both in terms of types of metrics and
coverage for all of their new models to support additional departments.

2. Interpreting the nuance in results so that they wouldn't just be alerted to whether
there was a null value, but seeing what % of null values would be considered
normal, given past history.

3. Data quality issues being created throughout the day, but only being tested at the
beginning of each day during a dbt build.

Despite evaluating other vendor solutions, Max and his team ultimately chose Metaplane
due to being able to solve the issues above, commercial agreement flexibility that could
accommodate Veronica Beard’s growth, their interactions with the Metaplane team, and
the ease of use in the product.

22

Now, more than a full year after their initial Metaplane implementation, the data team at
Veronica Beard has taken advantage of all of the new offerings that have come out since
they started. In addition to our core feature, data quality monitors, Max specifically
mentioned:

e Data CI/CD - This is the feature that broadened his initial scope of data
observability evaluation beyond just data quality monitoring. With a native Github
app, Metaplane is able to forecast how downstream tables and Bl dashboards
would change given an update to a dbt model.

e |ineage - Metaplane uses metadata to generate column-level lineage so that
users can understand where their ingestion tool is loading data down to which
business intelligence dashboards are impacted by a data quality incident.

VERONICA BEARD

Data is all about trust. Every time the business users identify an issue that the

team hasn’t proactively found, we naturally lose a little bit. It's not a problem with
making a mistake; everyone makes mistakes. But being able to tell others (about an
issue) first can actually flip the situation and increase trust, which Metaplane’s
helped us with.

) Max Legresle

y

© X B

Director of Data

Read more stories at: metaplane.dev/customers

When it came time to select a data observability tool, Veronica Beard chose Metaplane.
But how did Max take a thoughtful, structured approach to evaluating the many tools on
the market? He followed the below framework.

23

https://www.metaplane.dev/platform/data-ci-cd
https://www.metaplane.dev/platform/lineage
https://metaplane.dev/blog/metaplanes-new-column-level-lineage-map
https://www.metaplane.dev/customers

Metaplane | The Essential Data Observability Handbook: Proven Techniques for Modern Data Teams

IV. How to Evaluate Data Observability Tools

Data engineering teams far and wide are swamped with massive tech debt, a labyrinth of
dependencies, and ambitious roadmaps. These roadmaps usually cater toward more
obvious goals: creating curated datamarts for analysts and data scientists or establishing
robust data pipelines to new data sources.

As a result of massive backlogs that are heavy on feature building, stakeholders of data
engineering teams often discover data quality issues before engineers do. This erodes
trust in the data platform. And the less reliable that data is for analysts and data
scientists, the more likely that they will go directly to source data with poor-performing
queries to do their job. Stakeholders need confidence, and engineering teams have to
earnit.

Benefits of data observability tools

While most data teams write some tests in their ETL orchestration tools, they’re often too
basic to accurately account for the complexities of data quality (like machine learning for
row count thresholds and freshness variability).

Even if you write basic testing for every column and table, tweaking and fine-tuning tests
can be a massive waste of precious engineering time, making the testing unfeasible
without automation. Don’t get me wrong, dbt is a great start! But there are no super easy
ways to programmatically interact with tests, and don’t get me started on the amount of
YAML...

Benefits of Data Observability Tools

Iﬁ € Bigeye [l ¥ Datafold % acceldata
Metaplane

1 Improve testing baseline with minimal manual labor

Once different data quality dimensions are
covered with predictive alerts

Improve test-driven development processes

Once SQL development takes impact of
data quality into account

Provide long-tail features

Such as programmatic test creation, mechanisms for reducing noise
fatigue, and column-level and dashboard-level root cause analysis

Benefits that a data observability tool should provide

24

There are 3 main things to look at when you run a proof-of-concept (PoC) on data
observability tools:

1.

Baseline Testing Improvements - A tool should improve your baseline testing and

alerting strategy by utilizing predictive models to describe anomalous behavior with

machine learning-based anomaly detection. While dbt is great at what it does, it's not

smart enough to meet your data quality needs at scale. Here are some criteria to

consider:

[J Can it self-update its alerting behavior based on how your data changes?

[(J Can your team provide input on specific data points to adjust model behavior?

[J Can it cover different data dimensions of data quality including freshness, row
counts, and completeness (e.qg. nullness)?

] will it be able to scale for higher data volumes associated with complex and
growing data ecosystems?

[J Does it give you a realistic, scalar set of acceptable values for your data quality
metric?

Test Driven Development - Ideally, a Data Observability tool will help orchestrate

complex tests on custom cadences and help facilitate test-driven development (TDD).

Because testing strategies need to be comprehensive in order for data to be

trustworthy, here are some criteria to consider when you're evaluating tools:

[Does the tool integrate with your existing development environment?

(0 Can you use it to write, execute, and automate tests as part of the SQL
development process?

[J Can you customize test schedules to align with your development cycles?

[Does it offer comprehensive test coverage—including unit and regression
tests—to thoroughly validate data integrity, performance, and business logic within
your data pipelines?

Feature Priorities > A tool will provide better out-of-the-box features than dbt (or

whatever ETL orchestration tool your team uses), but which ones do you care about?

Simple pass/fail testing won't cut it when your team size and table counts double, so

the more features a tool has the better! Ideally, a tool can provide a global view of the

health of your data that satisfies these criteria:

() Will your tool be able to ensure data quality for values of a column both within the
context of that table AND within logical groups of that table?

[J Does the tool minimize false alarms and provide precise, actionable alerts that
enable your team to respond effectively to real problems?

[J Does it offer comprehensive data lineage capabilities so you can quickly diagnose
and rectify issues (even in complex data pipelines)?

25

https://www.metaplane.dev/platform/anomaly-detection

Scope of Evaluation

PoCs for other tools usually require less data, where you explore a smaller sample in
greater depth. But data observability tools demand a broad implementation in order to
be successful. If you PoC an observability tool against 10 data tables or data assets in 1
data system, odds are that the models won't fail during a trial period. In order to get an
accurate understanding of how healthy your data is, you need a pulse on all of it. Every
organization has imperfections in their data, it's finding them that is challenging

The length of the trial period for data observability platforms depends on
how long the models take to train against historical data. Most tools take
about 1-2 weeks to sufficiently train. Add about 2 more weeks of
monitoring alerts and exploring Uls, you’re looking at about 30 days to get
a grasp on the “bones” of the tool and how your team can leverage it.

Strategies for Evaluation

Here’s a quick and easy way to start the evaluation:

1. Manually trigger errors to see how different tools interpret the same problem.
It's up to you to evaluate whether it's worth triggering this sort of alert, or whether
there’s enough errors occurring already.

2. Get frequent team input to help encourage adoption once you finalize your
selection. The more people that are excited about better quality data, the faster
you'll get to a healthy state.

3. Make sure alerting is smart to be scalable. Are notifications easy to configure?
Does this tool route the right errors to the right channel? What dashboards are
affected? Are expected values flagged as anomalous? The last thing you need is a
tool that alerts you too often over discrepancies that are too insignificant. Crying
wolf can numb the team to real outages and bad data.

Notification fatigue has never been more present in the remote age, and making sure that
your team can develop a workflow for monitoring alerts is crucial, so having a flexible tool
is key. When your alerts are expected, you want to make sure there are easy ways to relax
a model's sensitivity. For unexpected alerts, you need to make sure that a tool can
successfully facilitate team intervention. Of course, no one (and no tool) is *perfect* We
all make mistakes, but here are some you definitely want to avoid when implementing
data observability in your organization.

5 Tips for Implementing Data Observability Get the guide 7

26

https://www.metaplane.dev/resources/5-tips-for-implementing-data-observability?utm_source=ebook&utm_medium=essential_data_observability_handbook&utm_campaign=ebook_repurpose

V. Mistakes to avoid when implementing data
observability software

There’s a lot to take advantage of with your new data observability platform—beyond
finding the issues that you are aware of, you can discover others that were previously
unknown, use context to prevent mistakenly creating future issues, and even enable
others outside the team on data.

But while you're out exploring this new territory, here are 5 mistakes you’ll want to avoid
during implementation.

1. Lack of Clear Objectives

Your company’s finance policy requires you to answer “How do we know your
implementation was successful?” while requesting a budget. The first, natural thought
that comes to your mind is “If we catch a data quality issue.”

But then you think about your morning commute—more specifically, waving goodbye to
your family through the front door camera. You installed that device last week and haven't
caught any burglars, but have definitely slept better as a result because you know it’s
pointed at the statistically most likely place your house is broken in from. Drawing
parallels from your security camera implementation, it can be helpful to break down your
objectives in a similar way.

Think about installation (i.e. creating an account and
integration) as your first step, and then think about where
you’d want to place data quality monitors based on which
objects are the most critical to your organization.

If you want to artificially create an “incident” through data manipulation, you can add a
column that'd trigger a schema change alert, which also has the added benefit of
confirming “installation”. Continue breaking down the rest of your objectives in this way.

The last note here is to be cognizant of your timeline. You'll want to ensure that any
stakeholders have time to acclimate to their roles during the implementation period.

27

2. Neglecting Data Quality Issues

Begin with what you know but don’t constrain your thinking as a result of it. While it is
important to understand how you'll be able to capture “that” issue next time it occurs, it’s
also important to remember how you got there.

There’s a good chance that you already have unit testing set up, but maybe you weren’t
testing for that particular type of issue, the test frequency had too large of a gap, or you
simply didn’t have unit testing enabled for a particular table.

All of those considerations are meant to help expand your scope beyond “find X issue on
Y table.” Many companies will choose to implement freshness and row count monitors
on “landing zones” (e.g. ingestion zones, bronze schemas) as they’re usually early
indicators of data quality issues, and can often discover silent data bugs.

3. Overlooking Scalability Requirements

One of the downsides of a simple setup is that eager users may choose to monitor for
every single type of anomaly (20+ with Metaplane!) on every single table in the
warehouse. While Metaplane does support automatically adding freshness and row count
monitors for every object, we don't recommend this for larger organizations with
hundreds or thousands of tables, due to alert fatigue—it can be hard to cut through the
noise.

While you could find every potential data quality issue in
your warehouse, an important part of implementation is
being rigorous about what alerts count as incidents when
considering the object in question.

Over time, you'll want to be stringent about re-evaluating your monitor types and
placement, both to ensure that new objects have coverage, but also to evaluate whether
your old monitor placements are still relevant.

As a bonus, while evaluating your old monitor placements, consider how they’re

sampling data—if it's directly querying tables as a necessary step to sample values within
a column, your warehouse compute will also be affected.

28

4. Ignoring User Training and Adoption

One often overlooked consideration is user involvement. Beyond familiarizing people with
navigating the Ul, users, even those who sit outside the data team, should be involved in
improving data quality. The common ground between all teams is usually found in a place
like Slack or Microsoft Teams.

As a result, in addition to some training on platform usage for data team members, it's also
useful to create a clear notification channel strategy that also incorporates business
users. This time of training can include: what slack channels receive alerts, what types of
alerts are sent (e.g. freshness, schema change), and roles of people involved in the slack
channel.

5. Neglecting Continuous Monitoring and Optimization

By default, your data quality monitors created through Metaplane will run at the
frequencies that you specify in the platform, enabling continuous monitoring by default.

While our machine learning models lead the industry in
anomaly detection, no machine is at a point where it
understands your business as well as you do.

As a result, especially when a monitor is being set up for the first time (i.e. early after it’s
finished its training period) or when you’ve changed how your data behaves or looks, it’s
important to provide feedback to the model.

That feedback can be given to Metaplane’s machine learning models either through Slack
or the app itself by marketing particular data points as normal to inform the acceptable
range.

Implementation Tips & Best Practices To Follow

A successful implementation of a data observability platform like Metaplane could be
summed up with “We caught a revenue-impacting incident on the first day!” But that'd
be discrediting all of the work that you've done to get it to catch critical incidents.

29

Instead, following these implementation best practices can not only help you to capture
those PO incidents, but also help you outline your work:

1. Outline capabilities
Integrate your entire data stack
Create clear objectives with a focus on critical objects and not root causes yet)
Review rollout
Review again as you continue to succeed and scale

aprLDd

Now, we've come this far. We know the ins and the outs of data observability in theory
and in practice. It's only fair that we tackle your final burning question: What'’s the ROI of
data observability?

30

Vi. What's the ROl of Data...Observability?

Unsurprisingly, the ROl of data observability and the ROl of data itself are closely
intertwined—the full potential of data as an asset can only be unlocked when it's
supported by observability frameworks. Because here’s the thing: data, no matter the
quantity, holds limited value if its quality, reliability, and contextual relevance are not
continuously monitored and maintained.

Without data observability, organizations base critical
decisions on flawed or outdated information (and diminish
the potential ROI of their data initiatives along the way).

Now, we won't give away all the answers. To learn everything you need to know about the
ROl of data observability, check out the previously live data chat between David
Jayatillake and Kevin Hu below! In it, they tackle some tough questions like:

What's the return on Data Observability?

What's the investment required for Data Observability?

Is that return on investment (ROI) worth it?

How is the ROI of Data Observability related to the ROI of Data itself?
What is the ROI of Data? (this deserves a chat of its own)

oA W=

I.I’I.I metaplane @ LIVE

What’s the ROI
data...observabi

Tuesday January 17
1pm ET /10 am PT

Watch the recording

31

https://www.metaplane.dev/event/whats-the-roi-of-data-observability?utm_source=ebook&utm_medium=essential_data_observability_handbook&utm_campaign=ebook_repurpose

Metaplane | The Essential Data Observability Handbook: Proven Techniques for Modern Data Teams

What’s next?

We like to boil down the importance of data observability into one question: are any teams
making business or product decisions based on the data your team ingests, stores,
transforms, or visualizes?

If the answer is “yes”, then adding observability should be a requirement for this quarter.

But we've been there—sometimes teams don’'t have enough bandwidth and wait until
they are inundated with PO issues before they prioritize data quality. We, as data
engineers, need to get ahead of data debt and create reliable and resilient systems so
that we can empower our teammates to make accurate and business-improving
decisions every day.

If you aren’t convinced of the importance of data observability, we'd love to hear your
opinions and take you out for a virtual coffee. If you are, now is a better time than ever to
explore any of the many open-source or commercial tools in the space.

AN

For high-leverage teams that want a fully

managed solution with end-to-end lineage that
doesn’t cost more than your warehouse, you can
try Metaplane for free or book a demo for your
specific use case!

32

https://www.metaplane.dev/state-of-data-quality-monitoring-2021
https://www.metaplane.dev/signup?utm_source=ebook&utm_medium=essential_data_observability_handbook&utm_campaign=ebook_repurpose
https://metaplane.typeform.com/to/fLSow9py?utm_source=ebook&utm_medium=essential_data_observability_handbook&utm_campaign=ebook_repurpose

